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We consider L ,-approximation (1 < p < oc) by multiinteger translates of several
functions .which are not necessarily compactly supported but have a suitable decay
rate. In particular, we introduce a modified notion of controlled approximation and
characterize the controlled approximation order in terms of the Strang-Fix
conditions, €1993 Academic Press, Inc.

1. INTRODUCTION

In this paper we consider L, -approximation (1< p< o) by the multi-
integer translates of a finite number of functions which are not necessarily
compactly supported but have a suitable decay rate. In particular, we
introduce a modified notion of controlled approximation and characterize
the controlled approximation order in terms of the Strang-Fix conditions
(see [15]). Our results extend the recent interesting work of Light and
Cheney [12].

Integer translates of a function on R were already considered by
Schoenberg in his celebrated paper [13]. Let ¢ be an exponentially
decaying function on R. For a sequence ¢ on Z, the semi-discrete convolution
product ¢ *" ¢ is the function given by

g c=Y ¢(-—)c())

jeZ

We say that the mapping ¢ *’ preserves polynomials of degree & — 1, if for
any polynomial p of degree d<k —1, ¢+ p— p is a polynomial of degree
<d. Schoenberg proved that ¢ x’ preserves polynomials of degree k — 1 if
the Fourier transform ¢ satisfies the conditions ¢(0) # 0 and D*§(2nj)=0
for 0<a<k and jeZ\{0}.
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In the finite element method, multivariate piecewise polynomial functions
are frequently used. In the 1970s, Strang and Fix extended Schoenberg’s
work by considering a compactly supported function on R” and its multi-
integer translates. Let ¢ be a locally integrable function having compact
support. For a sequence ¢ on Z” the semi-discrete convolution product
¢ *' ¢ is the function given by

pxci= 3 pl-—v)el(v)
ve "
If » and ¢ both are sequences on Z”, we also denote by b *' ¢ the sum
Yembl-—v)e(v). In [15] Strang and Fix introduced the concept of
controlled approximation and successfully characterized the controlled
L,-approximation order by showing that ¢ provides controlled
L.-approximation of order & if and only if ¢ satisfies the conditions

(1°) ¢(0)#0 and
(2°) D*@¢(2rv)=0 for all || <k and ve Z"\{0},

where we have used the multiindex notation. More precisely, we denote by

N the set of nonnegative integers. An element o = («,, ..., a,) € N” is called
a multiindex. The length of x is defined to be [«f :=37_, «;, while the
factorial of « is a!:=a,!---2,!. For a multiindex x, D*:=D7}...Di

where D; is the partial derivative operator with respect to the jth
coordinate, j=1, ..., n. Now the conditions (1°) and (2°) together are called
the Strang-Fix conditions of order k. We would like to emphasize that in the
univariate case (#= 1) these conditions already appeared in Schoenberg’s
work [13].

Strang and Fix [15] also considered multiinteger translates of a finite
collection of compactly supported functions. To describe their results we
need to introduce some notation. Let R” be the n-dimensional real linear
space with the norm ||| given by

x| = 1max bx,l, x=(x,, .., x,)eR"
sjsn
If 2= R" and r >0, we denote by B,(Q) the closed ball of radius r around
Q, that 1s,
B.(Q):={xeR": dist(x, Q)< r}
with
dist(x, 2) 1= inf2 flx—»l.

When © = {x}, we write B,(x) for B,(2), and simply write B, for B, (0). If

/is a measurable function on a measurable subset 2 of R”, we denote by
I1/1,(82) the quality (fq |17 dx)"”. Similarly,

[l (2):= 3 IDf1,(2) and  Ifl,(2):= 3 [D*f1],(2).

x| =k le] < &
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When Q is omitted, the norm is understood to be taken over R”. Let
WI’,‘= WI’,‘(R") be the usual Sobolev space equipped with the norm |-, ,.
A mapping from Z” to C is called a sequence on Z". The /,-norm of a
sequence ¢ = (c(v)),.z» on Q2 is defined to be

el () :=( 5 \c(vw> o

ve 7"~ 2

Given h >0, let o, be the scaling operator given by
g, f(x):=f(hx) for all xeR"

Let @={¢,,..,dn} be a collection of compactly supported functions on
R”. We say that @ provides controlled L -approximation of order £ if, for
each fe W,’,‘([R") there exist sequences c (j=1, .., N; A>0) such that the
following inequalities hold for a constant C mdependent of h:

(1) W= ulE % iy "7y, <CH | fli
(ii) “C_/H,,SCHfH,,,j—1,...,N.

The collection @ is said to satisfy the Strang-Fix conditions of order k if
there exist finitely supported sequences b;: Z"—C (j=1, .., N) such that
the function Y | @, +’ b; satisfies the Strang-Fix conditions of order k.
Strang and Fix claimed that @ provides controlied L,-approximation of
order k if and only if @ satisfies the Strang-Fix conditions of order k. Their
claim had been in doubt for a long time and finally was disproved by Jia
[ 107 using a counterexample.

In [9] Dahmen and Micchelli quoted the result of Strang and Fix in a
modified form. They required (1) and (ii) to hold locally. We may say that
@ provides locally controlled L, -approximation of order k if for each
fe WA(R") there exist sequences ¢] (j=1,.., N; h>0) such that for any
closed domain G,

() 1S ~ou(Z ¢ % )b "7, (G)< Ch*| f1y ,(B,,4(G)) and
(ii") et (h~'G—=U, supp ¢,) < Clfll,(B,n(G)), j=1, ... N

hold for some constant C and r independent of A4, G, and f. It turns out
that & does satisfy the Strang-Fix conditions of order k if @ provides
locally controlled L,-approximation of order k for any pe[l, oc]. This
was proved by de Boor and Jia [3]. In fact, they proved an even stronger
result by observing that it is the localness rather than the control that does
the job. Thus they introduced the concept of local approximation order by
saying that the collection @ provides local L,-approximation of order £, if
for each fe WX(R"), there exist sequences cf’ {(j=1, .., N)such that (i) and

P
the following condition (iii) are satisfied:
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(ili) There exist a constant r independent of A such that
dist(vh, supp f)>r=c/(v)=0, j=1,.., N.

They proved that @ provides local L ,-approximation of order k if and only
if @ satisfies the Strang-Fix conditions of order k.

Recently Light and Cheney [12] employed a finite collection
®=1{¢,,..¢y} of functions having global support to generate the
approximations. Some assumptions were made about the rate of decay of
these functions at oo. Let Ae(0, 1) be fixed. For a positive integer k, let
E, = E, (R"”) be the space of all functions f on R” for which

sup {|f() (14 x])" ¥+ 4} < oo.

xeR"

Let & be a finite collection of functions in E,. Light and Cheney [12]
showed that ¢ satisfies the Strang-Fix conditions of order k if and only if
for each fe W* (R") there exist sequences b; (j=1, .., N) such that

sup {1b;() (1 +vl"* *H) <0, j=1.,N,

veZ"

and

ﬂf—mj<i¢H%%yﬁf0

i=1

S Ch | flg, -

In this paper we improve and extend the results of Light and Cheney by
mtroducing a modified notion of controlled approximation and charac-
terizing the controlled approximation order. From now on we say that @
provides controlled L ,-approximation of order k if, for each fe W:(R"),
there exist sequences cj’.' (j=1, .., N; h>0) such that (i), (ii), and (iii) hold.
Thus our requirement for controlled approximation is stronger than that of
Strang and Fix, but (seemingly) weaker than the requirement of Dahmen
and Micchelli for locally controlled approximation.

In [12] Light and Cheney dealt with L_ -approximation only. In
this paper we deal not only with L_ -approximation but also with
L ,-approximation (1 < p < o). It should be emphasized that the construc-
tion of L, -approximation (I< p<oo) requires much more work than
that of L -approximation. We also observe that the treatment for
L, -approximation in [3] was inadequate. The present paper gives us an
opportunity to describe the L, -approximation in details.

The main result of this paper is the following:

THEOREM 1.1. Let @ be a finite collection of elements in E,. Then &
provides controlled L ,-approximation (1< p<oc) of order k if and only if
D satisfies the Strang—Fix conditions of order k.



6 JIA AND LEI

It is not known whether the characterization of de Boor and Jia [3] for
the local approximation order still holds in the present situation. We
conjecture that this is the case, i.c., @ provides local L, -approximation of
order k if and only if & satisfies the Strang-Fix conditions of order k.

The paper is organized as follows. In Section 2 we discuss the various
equivalent forms of the Strang-Fix conditions. It is interesting to observe
that the equivalence between those various forms can be proved without
any consideration of approximation. In order to construct an L, -approxi-
mation, an appropriate smoothing technique is needed. Section 3 is
devoted to this smoothing technique and a related problem of local
approximation. On the basis of the results in Section 3, we construct a
global L,-approximation in Section 4. Finally, in Section 5, we complete
the proof of Theorem 1.1 by invoking a technique used in [3].

2. THE STRANG—F1X CONDITIONS

The Strang-Fix conditions have various equivalent forms. In this section
we show that the equivalence between these various forms can be proved
without any consideration of approximation. The proof of the equivalence
is based on Poisson’s summation formula.

In what follows the Fourier transform of a function ¢ € L'(R") is defined
to be

de)i=| dlxre " dx

We denote by IT = II(R") the linear space of all polynomials on R", and
by 17, its subspace of all polynomials of (total) degree at most k. Following
Light and Cheney [12], we denote by V', the monomial given by x — x*/a!,
xeR" A mapping T on 7 is called degree-reducing if for any pe 71, Tp is
a polynomial of degree less than the degree of p. If p:x+—3 a,x*is a
polynomial, then p(D) denotes the differential operator induced by p, i.e,
pD)=%,a,D"

The following form of Poisson’s summation formula may be found in
Stein and Weiss [14, Chap. 7]. Suppose ¢ and its Fourier transform é are
continuous on R”, and for some & >0, there exists a constant C >0 such
that

[@(x)| < C(1+|x]) "2, xeR", (2.1)

FON<C+Ipl) "%  yeR~
Then
Y ogv)= Y (2. (22)

ve Z® ve Z"
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On the basis of this result, Dahmen and Micchelli in [8, Lemma 2.1]
gave the following form of Poisson’s summation formula: Suppose that
¢eC.(R") and

#(2nv)=0  for veZ™\{0}. (2.3)
Then
$(0)= 3. 4(v) (24)

If ¢ is not compactly supported, then it is evident from the proof given in
[8] that (2.4) still holds provided that ¢ satisfies the conditions (2.1)
and (2.3).

In both {8] and [12], ¢ was assumed to be continuous. This would
exclude the characteristic function of the unit cube, which is a typical spline
function. Hence it is desirable to relax the continuity requirement. For this
purpose Jia [11] introduced the concept of normal functions. A function
¢ on R" is called normal if ¢ is locally integrable and for any x € R”,

¢{x)=lim

1
lim B Ly 20 4 25)

where m denotes the Lebesgue measure. For a piecewise polyromial
function ¢, the limit on the right of (2.5) always exists, and this limit equals
#(x) if x is not on the mesh. The following form of Poisson’s summation
formula is what we will need.

THEOREM 2.1.  Suppose that ¢ is normal and satisfies (2.1). If the Fourier
transform ¢ satisfies (2.3), then (2.4) holds.

Proof. For >0, let

$.(x) = (y) dy.

vl
’71(311('Y)) Be(x)
Fix ¢ for the moment. Then ¢ e C(R"), and ¢, satisfies (2.1). We observe

that
, 1

'y = y —ix-2nv s

$.(2nv) m(BE)f EJ‘W¢(.\’+))e dx dy
- F ) 1 iv.2nv .
_¢(2m)m(B£)'(Bre dy.

Hence
#.(2nv) =0, veZ™{0},
$.(0)=4(0).
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Since ¢, is continuous and satisfies (2.1) and (2.3), we have

6. (0)=Y ¢,(v). (2.6)

I‘El"
By the normality of ¢,
$(v)=1lim ¢ (v), veZ"

&—0

Letting ¢ = 0 in (2.6), we obtain the desired result. J

Let now ¢ be a normal function in E,(R”). We consider the action of
the operator ¢+ on [1,_,. Note that for any pell, ,, ¢* p=
e @(-—v) p(v) is well defined. The following theorem and its
corollaries can be proved on the basis of Theorem 2.1 {the Poisson summa-
tion formula).

THEOREM 2.2. Let ¢ be a normal function in E (R"). The mapping ¢
maps IT, | into itself if and only if the Fourier transform ¢ satisfies

p(—iD)$(2nv)=0  forall pell, |, and veZ"™\{0}. (2.7)

COROLLARY 2.3. The mapping ¢ ' is an isomorphism on II, | if and
only if ¢ satisfies the Strang—Fix conditions of order k, that is, ¢ satisfies
(2.7) and $(0) £ 0. If, in addition to (2.7), ¢ satisfies $(0)=1, then 1 — ¢ '
is a degree-reducing mapping on I1, _ .

COROLLARY 2.4. The mapping ¢ *' is the identity on Il, _, if and only if
in addition to (2.7) ¢ satisfies

p(—iD)¢(0)=p(0)  forall pell, .

Remark. When ¢ is compactly supported, Theorem 2.2 and its corollaries
were first proved by Strang and Fix in [15]. See [1, 2, 8, 11] for various
extensions of Strang and Fix’s results. The proofs given in [1, 2, 8, 11] can
be carried over verbatim in the present situation.

We consider now a finite collection @ = {¢,, .., ¢ v} of normal functions
in E,. Recall that @ is said to satisfy the Strang-Fix conditions of order k
if there exist finitely supported sequences b; (j=1,..,N) such that
qﬁ:Zl’.V:l ¢, " b, satisfies the Strang-Fix conditions of order k. When
¢,, ., 5 are compactly supported, Strang and Fix [15] gave several
equivalent forms of their conditions. Their results can be extended to the

case in which ¢, ..., ¢ are in E,.
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THEOREM 2.5. Let ®={¢,, ..., dy} be a collection of normal functions in
E,. Then the following conditions are equivalent:

(1) There are functions ., (|a| <k) in span(®) such that J,(0)=1
and
S Vy(—iD)y, ,2nv)=0  for veZ"™\[0) and |al<k. (2.8)

hESE
(I1) There exist yr, (|a| <k} in span(P) such that
V.= Z Y, gx Vyell, .

f<a

(IIT) There exist finitely supported sequences b, such that
¢ = Z _ 1 $; %' b, satisfies the condition (2.7) and $(0) #0.

In fact, even in the case where ¢,, ..., ¢ are compactly supported, the
proof given by Strang and Fix in [15] was incomplete. The first complete
proof of this result was given by de Boor and Jia in [3]. Their result was
extended by Light and Cheney [12] to the present theorem.

Here we point out that the equivalence of the properties (I), (II), and
(II1) can be proved without any consideration of approximation. For this
purpose we only need to supplement a proof for (III)= (I). Suppose
¢ =}:;’=1 ¢; *' b; satisfies #(0)=1 and condition (2.7). Then we have

3&)=Y Y b(e T4 (&) feRn (2.9)

j=1 ye2”
Let
N
=Y Y b6 Vi=7)8, lal<k
j=1 yez"

We claim that (,),, <« satisfies ¥0(0) =1 and the condition (2.8). Indeed,
it follows from (2.9) that

=4 0=2 2 5140

J = ;€2

Hence /4(0)=1, as desired. Moreover, for |x| <k and veZ™\ {0}, an
application of the Leibnitz differentiation formula gives

0=V, (—iD) ¢(2nv)

=2 {Z Y Vig(=7) ()} Vy(—iD) §,(2nv)

fgsa LG=1 yez?
= 3. Va(—iD) ¥, _4(2nv).
p<a

This completes the proof of Theorem 2.5.
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If ®={4,,.., ¢y} satisfies the Strang-Fix conditions of order &, then
there exist finitely supported sequences b; (j=1,.., N) such that the
function ¢ :=3% " | ¢, *' b, induces a degree-reducing mapping 1 —¢ *' on
IT, . Light and Cheney [12] proved that there exists a sequence » such
that the function  :=¢ =" b induces an identity ¢ *' on /7, ,. Using this
i, they constructed an L, -approximation as follows. For fe W* (R"), let

Sh(./‘) :20-1,‘/1([// *( Ult.f)' (210)
They showed that there exists a constant C such that
If =il SCHIf1,  forall feW! (R") and h>0.  (2.11)

The sequence b/ they used, however, is not finitely supported, hence their
method does not produce a local approximation in the sense of de Boor
and Jia [3]. To overcome this difficulty we prove the following lemma
showing that b can be so chosen that it is supported on the set {xeN":
le| <k—1} (see [1, 4]). In the following, for xeR”, [x] denotes the
functional of point-evaluation at x, and 7, denotes the translation operator

given by T'.(f)=f(-+x).

LEMMA 2.6. Let pe E, be a normal function such that 1 —¢*' is a
degree-reducing mapping on I1, . Then there exists a sequence b supported
on {axeN": |a| <k — 1} such that the mapping ¥ ' induced by y=¢ ' b is
the identity on I, _ .

Proof. The operator L:=¢*'|;  is an isomorphism on [7, .
Moreover L commutes with every translation operator 7, xe R". Let L !
be its inverse operator. Then L ' also commutes with translation
operators, and [0]L 'is a linear functional on /7, ,. Let 4 be the span
of linear functionals [x], xe N”, |2 <k — 1. Then A and 17, | are dual to
each other with respect to the bilinear function given by

(Lol po = pla)
(see, e.g, [S5]). Hence there exist complex numbers a, (zxeN" and

Ja] <k —1) such that

[01L'= 3 a,[a]

laf <k —1
For any pell,_, and xeR”", p(-+ x) is also in /7, _,. Hence the above
equation yields

[0IL '(p(-+x))= 3 a,[2](p(-+x)).

o<k A
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Since L' commutes with 7, we have

(L7'p)x)= Y a,T,plx) for all xeR"

lx| <k —1

It follows that

lel <k -1
Let b: 7" — C be given by
Qag, if fe N" and <hk—1;
0, otherwise.

Then for any pe 1, _,

(¢*’b)*’p=< Y 01T1¢>*’p=L*’(¢*’p)=L"‘(Lp)=p- |

lxl <k — 1

Now with the help of Lemma 2.6 the result of Light and Cheney in [12]
says that if @ satisfies the Strang-Fix conditions of order %, then @
provides controlled L -approximation of order k. Note that the point-
evaluation functionals [Av] are used in (2.10). In general, point-evaluation
functionals are not continuous on Wﬁ(R") (1 < p< o). Hence a suitable
smoothing technique must be worked out in order to construct an
L ,-approximation. This is the content of the next section.

3. LocAL APPROXIMATION

Let y be an element of C*(R") such that supp ¢ < B,(0), ¥ >0, and
f ¥ =1 Set

¥, =y (k" h>0.

For a given function feL,(R") (1<p<o) and h>0, consider the
function

fx)=] (f=ViN b de,  xeR" (3.1

where V, denotes the difference operator given by

V.S =r=f—-u.
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Correspondingly, we denote by D, the directional derivative operator in
direction u, i.e.,

Du: Z uD fOr U= (u] LRI un)e R"'

In the univariate case (n=1), such a smoothing technique was employed
by DeVore [7] in studying degree of approximation.

Tureorem 3.1. For felL, (R") (1<p<x), the functions f, are
C*-smooth. Moreover, there exists a constant C depending only on k and n
such that for any measurable set Q < R"

(@) Wl ()< CUSN(Bean($2));
(b) £l ()< Ch NS Bl 2)) (1< p<oc);
(©) (Z,com lflh)I?) "< Ch ") fl], (1< p< o).

Proof. From the well-known expression

¢ k
Vi T () s,

m=0

we deduce that
N
f—fo: Z (—1)'"'(:1>f(.__mu). (3.2)

Observe that for m>1

J Gy o) du= [ = u) yyfumym’ du= [+ (- /m)jm
33)

From (3.1)-(3.3) we see that the functions f, are C *-smooth, because y,
are C ™ functions for any 4> 0.

Part (a) of this theorem can be proved by applying the generalized
Minkowski inequality to the integral in (3.3). For 1 <m <k, we have

H ) () d) (@) [ Sl (@) §yt) d

P

<111y (B @) | halu) du= 11, (B )

It follows that
I £l ,(2) S CILfIl, (Brnl£2))
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with

k ]\’ .
c< Yy )=t

m=1

The proof of part (b) relies on Holder’s inequality. Let ¢ be the exponential
conjugate to p, ie., l/g+ 1/p=1. Note that supp ¢, < B,. By Holder’s

inequality, we have
lip 1ig
<(j lf(x—muwdu) (j (wh(un"du) .
By By

(3.4)

[ 0= ) o)

For the first integral on the right of (3.4) we have the following estimate:
lip
(J | x = rmu)]? du) <IS1,(Bu(x),  for 0O<m<k.
By

Making change of variables in the second integral gives

l/gq l‘r‘q/ ‘
(], Wty au) " =(w ] ) fe<cn
By B /
where C=sup, .z {¥(u)}. This proves part (b).
In particular, part (b) implies that

Y < crh Y f 1£(x)]” dx.

ve Z" ve 2 ° Bunvh)
We observe that every x e R” is covered by at most (2k + 1)” balls B,,(vh)
(ve Z"). Thus the proof of part (c) will be complete once we prove the
following lemma.

LemMMa 3.2. Let & be a collection of measurable subsets of R" and M a
positive integer. Suppose that every point x € R" is covered by at most M sets
from &. Then for any ge L (R"),

Y [ lgldes M| gt dx.
EcaE R

Proof. For each E€é, let y, denote its characteristic function. Since
every point xeR" is covered by at most M sets from &, we have
Y pes xe(x) < M for all xe R". Therefore,

Y xE(x)dstf | g(x)] dx,
e & l2ig

£

~

Y | ltndx<| gt

Ecs " E

as desired. |}
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Remark. Sometimes it is desirable to relax the smoothness requirement

for the kernel y. If y e C*, then f, are also C*-smooth, and the properties
(a), (b), and (c) of Theorem 3.1 still hold.

The following theorem tells us that f, is a good approximation to f
when 4 is small.

THEOREM 3.3. There exists a constant C depending only on k and n such
that for any fe€ W’;(R”) (1< p< ) and any measurable set 2 = R”,

Lf =l ()< CR* 1S ,(Binl(R)),  O<I<k (3:5)

Proof. If 1=k, then (3.5) is a consequence of Theorem 3.1. Thus we
only need to deal with the case 0</<k First we assume that [ is
C*-smooth. It suffices to estimate [|D’(f — f,)||,, for each fe N", |B| =I<k.
Since

(f=Sx) =] VESG) ) du
we have
DHf = fi)x)= [ VED(x) dr(u) di

Given a positive integer r, let M, be the B-spline given by the rule

M, (1):=V(-—1) Yr—1), (3.6)

where V is the difference operator defined by Vg := g — g(-—1). Then M,
is supported on the interval [0, »]. Moreover, by Peano’s theorem (see,

eg., [6, p. 70]),
V’g=J0r (D'g)(-— 1)y M, (1) dl, for all geC'(R).
Hence
VEDRf=VE "’Vl’,D"f=f:kIDﬁ*’V,’,D”f(-—tu)Mk,,(t)dt.
It follows that

k1
DIf=fx)=] | VDL 'DAfC— ) My (1) Yylu) dt
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Applying the generalized Minkowski inequality to the above integral, we
obtain

DA~ £l (@)
< [IVIDE D =l (@) Mo () ) dr i, (37)
& Y0

Note that D, =3%7_, w,D, for u=(u,, .., u,). Hence for uesuppy,< B,
and 0<71<k—1/ we have

VDL 'DEf(-— 1)), () S CH* ™| f1x ,(Binl2)), (3.8)

where C is a constant depending only on k and »n. Since both the integrals
J6 "M, _,(t)dt and [g.¥,(u)du are equal to 1, hence (3.7) and (3.8)
together yield the following estimate:

IDP(f — Sl () S CH | fli p(Binl(2)). (3.9)

When 1< p<oc, CHR")n WE(R") is dense in W5(R"), so the estimate
(3.9) holds for any fe W;(R"). In the case p = oo, we may assume without
loss that the measure of 2 is finite and positive. Then any ge L _(£2) is also
in L,(2) (1 <p<w). Moreover, | gl,(£2) converges to {gli.. as p— oc.
Thus, letting p — oc in (3.9), we conclude that (3.9) is also true for p= o
and fe W*(R"). |

4. GLOBAL APPROXIMATION

Let ¢ be a normal function in E,(R”). Then there is 4> 0 such that
() <CA+|x|) " %% forall xeR"

where C is a constant depending only on ¢. In this section we construct an
L ,-approximation (1< p<cc) using translates of ¢. In what follows C
means a constant depending only on &, n, 4, and ¢. In particular, C is
independent of p. But C may be different in different contexts. Our
construction is motivated by the work of Dahmen and Micchelli [9].

THEOREM 4.1. Let ¢e E,(R") be a normal function. For fe Wi(R")
(1< p< ) and h>0, set

sy(x) = Z Sulhv) ¢(x/h—v), xeR",

ve ZH

640:72/1-2
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where f, are given by (3.1). If ¢ ' is the identity on II,_ |, then

||f_sh||p<C|f‘k,phk.

Proof. 1n the case p= co, the above estimate was already proved by
Light and Cheney [12] for s,:=0,,(¢ *' 0, f) (see (2.10) and (2.11)).
Their proof is also valid in the present situation. In the following we
assume that 1 < p < co. By Theorem 3.3, we have

If = full, < CIA L, h-

Hence it remains to show that

”fh_sh”psclf'k’phk.

Let
Gy pi=(a+ [0, 1]")A, xeZ"

We estimate | f,(x)—s,(x)| for xe G, ,. Fix « and xe€ G, , for the moment.
Let u be the Taylor polynomial of f, of degree k — 1 about x. In particular,
fu(x)=u(x). Since ¢ *' is the identity on /1, _,, we have

u= Z u(hv) ¢(-/h—v).

veZ"

It follows that
Su(x) — 5p(x) = u(x) — 54(x)

Y (u(hv) = fu(hv)) $(x/h—v)

vez"

Y (u(ho+ hv)— flha + hv)) p(x/h—a—v).  (4.1)

ve Z"

Since € E, and x/h—ae [0, 1]" for xe G, ,, we have

|@(x/h—a—v)| <C(+|v}j) <% forall xeG,,.  (42)

We use Taylor’s formula to estimate |f,(ha+ hv)—u(ha+ hv)]. For
simplicity write y:=hx+hv and &, ,:=(1—t)x+1ty. Then by Taylor’s
theorem we have

u(hv + ha) — fi(hv + ha) = —Jl DY A& )=o) Yk — 1) dr
0

Note that
fy—xl=lAv+ha—x|<h(1+(vl) for xeG,,.
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Hence
(DX ful&, ) < CHA L+ |IvID* Fu(€,),

where

F, .= Z |DEf,. (4.3)
18 =k

From the above estimates we see that
1
fu(hv + ha) — fo(hv + ha)| < CRA(1 + ||v)] )"J‘ F (&, ,)ad (4.4)
0
Thus (4.1), (4.2), and (4.4) together yield the following estimate:

1
() = s,(x)| < Ch* 3, (1+||v||)"'"~‘f Fy(&,.,)dr.

veZ” 0

Let g be the exponential conjugate to p, ie., 1/g+ 1/p=1. By Holder's
inequality, we have

el
S (T [ R dr

ve Z"
l/q 1 Py lip
<{ 2 (1+1|v||)""‘-} {Z (1+tlv||)*”*’”'(f0 Fh(év,,)dt)}
ve Z" ve Zn

The first factor on the right of the above inequality is bounded from above
by a constant independent of ¢g. To estimate the second factor, we use
Holder’s inequality again to obtain

[ eaas([va)" ([ rreoa) ([ meoa)”

Consequently, we have

1 t/p
=5l <Ch{ T (D [ rpeai

veZ" 0

forall xeG,,.

It follows that
1f=sals= % | 10— six)” d

we Z" "Gk

<crir Y+ Y [ [ FpEdide (45)

vezn xe2n " Gun“0
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To estimate the above sum over x € Z”, we divide the unit interval [0, 1]
into 1 + [[v[l equal parts by setting

Li={teRj/(1+Iv)<e<G+ D/ + VDY, =0, vl

Thus
| vl
| Freydi= Y | FrE.d
o j=0"1
Since xe G, ,, for tel;, we have
L= =tx+ttha+h)=((1—-t)x+t(ha))+thve G, ,+ hvl,

while the length of each 7, is 1/(1+ ||v||). Hence
J, FRE) dr <Y+ VD) I (G o+ )

To estimate |[F, ||, we set Fi=3 4 _4 |D? {1 in correspondence to (4.3).
Applying Theorem 3.1 (b) to each D’ f (|f| =k) and Q := G, ,+hvl, and
then adding them up, we get

NEA N 2(G,  + VL) S CPh ™" (| FILG,, ), + hvI; + By,,).
Putting these estimates together, we obtain
P v}

Y[ [ Fpe)didxs Y T VFIAGa+ hvl+ By, (46)

2ezn *Gap*0 1+ |IVH J=0 aez”

where we have used the fact that the Lebesgue measure of G, , is #”. We
observe that

Gunthl+ By, S ha+ hvj/(1 + |Iv]) + By 4 2yns

hence every point xe R”" is covered by at most (2k +5)" sets from the
collection {G,,+Hhvl,+ B, 1,:2€Z"}. Therefore, by Lemma 3.2, we
obtain

Y NFN2(Gon+ hvE + By) < (2k+ 5)" || FI|Z,
xe
where

IFI;= Fre)de=| 3 D" fix)7 de<IfIE,,

R 1) =&
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This together with (4.5) and (4.6) gives the desired estimate:

1= 3al, SCH | flip-

Let us summarize what we have proved. Let @ = {¢,, .., ¢} be a finite
collection of normal functions in E,(R"). In Section 2 we showed that if @
satisfies the Strang-Fix conditions of order i, then there exist finitely
supported sequences b, (j =1, ..., N) such that the mapping ¢ +" induced by

¢:=%" ¢+ b, is the identity on I7, _,. In this section we have shown

that for f€ Wi(R") (1< p<o0) and &> 0, the function
Sp =0 (@ * 04 13)
satisfies

ILf = sull, < CH*| fl.p-

In the above expression of s,, substituting ¢ by 3~ | 4, " b,, we obtain

N
Sy = Z G 1u(@; * C;I)hin"‘p,

j=1

where
cf:(b,*’a,,f,,)h""”, j=1., N

Since b, (j=1, .., N) are finitely supported, the sequences ¢ satisfy the
condition (iii) in Section 1. Moreover, by Theorem 3.1(c), ¢} also satisfy
the condition (i1) there. Thus the sufficiency part of Theorem 1.1 has been
proved. The necessity part of Theorem 1.1 will be proved in the next
section.

5. CHARACTERIZATION OF THE CONTROLLED APPROXIMATION ORDER

We restate the necessity part of Theorem 1.1 as follows:

THEOREM S5.1. Let @ ={¢,, .., ¢n} be a collection of normal functions in
E.(R"). Let p be a fixed real number, 1 < p< 0. If for each f¢ Wﬁ(lR{"),
there exist sequences ¢} (j=1, .., N) such that

(i) IS —0, () % Y"1, < Ch | fli s
(i) et <Clfl, j=1,., N, and
(iii) dist(hv, supp f)>r=>c/(v)=0, j=1,.. N,
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where C and r are positive constants independent of h, then & satisfies the
Strang—Fix conditions of order k.

Proof. The proof goes along the line of [3]. We approximate a tensor
product of univariate B-splines—namely, the function

! k+1
u(x).'zn Mk+l<xj—T>a x=(x[a~'s xn)ERns (51)
j=1

where M, is the B-spline given by (3.6) (see [13]). Since ue Wﬁ(R”), we

can find sequences c}' (j=1, .., N; h>0) so that the conditions (i), (ii), and

(iii) are satisfied. Let
N
u, :=h“"“”’ol,,,< ¢j*’cj'.’>
j=1

j=

and set g :=u—u,. Then the property (i) implies
I gll, < Ch*.
We claim that
1D*8l . < Ch* for |aj]=m<k and O0<h<]l (5.2)

To this end we apply the differential operator D* to ¢ and obtain

D*(&) = (~ix)* glx)e <" dx.
R
It follows that
ID°8l. <[ IximIgx) dx=:d  for Jal=m.

Let R:=r+k. Since the support of u is included in the ball B,, by the
property (iii) we have

chv)=0 for |vh|>R. (5.3)
Write

J=[ xImigldx+ [ X7 gl dx=:d, 4+ s
Ixll < 2R R

llxi 22

Applying Holder’s inequality to the first integral J,, we obtain

lip

1/g
Jls(j (uxn"')"dx) (j rg(xw’dx) <Cligll, < CH-.
Ix{ <2R fxh <2R
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For the second integral J, we observe that
lxl 22R and |vh| K R=u(x)=0 and |x/h—v||=x||/(2k)
It follows from (5.3) and (5.4) that for ||x|| = 2R,
N
gx)=) Y A "ci(v) 4, (x/h—v)
J=1 <R
Since all ¢,€ E,(R") (j=1, .., N), we deduce from (5.4) that

N
gI<C Y T AP0 Itk —vi

J=1 lhvl <R

SCh=""(|x|/h)~"=* =+ % ¥ |ch)l.

j=1 vl <R

Since ¢/ satisfy the condition (iii}, by Holder’s inequality we have

v < R vl < R [vij < R
Putting the above estimates together, we obtain

lg(x)] SCH*** x| =* " *|lull,,  for x| >2R.

Lip Iy
5 \c;'(v)ls( 5 |c;(v)|") (z 1) <Clull b
I

21

(5.4)

Note that u is a fixed function. Hence it follows from the above estimate

that

J2<Chk+/l'( ||x||'"“'k""”—'deChk.

Il = 2R

To summarize, we have proved our claim (5.2).
The Fourier transform of » can be easily computed:

n N 2 A+ 1
ﬁ<5)=n{§5‘g—%—’} . E=(f . E)ER"

j=1
Hence
2(0)=1

and

lim D*u(é/h)/h*~'=0  for EeR"™\{0} and |af <k

(5.5)

(5.6)
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Recall that g =u —u,. Thus (5.2), (5.5), and (5.6) together yield

lim ,(0) = 1

h—0

and

lim D, (Eh/h—1=0 for all £eR"™\{0} and {o| <k.
h—0

Therefore it remains to prove the following:

LEMMA 5.2. Let k be a positive integer and @ a finite collection of
normal functions in E_(R"). For each h >0, let S,(D) denote the linear space
spanned by ¢(-/h—v), where ¢ P, veZ". Suppose that there is a family
(U}, - o Of functions satisfving the conditions

(a) wu,eS,(D) for each h >0,
(b) lim,_,4,(0)=1, and
(c) limy,_ o D*a,(E/h)/R* " =0 for Ee R™\{0} and |x| <k.

Then @ satisfies the Strang—Fix conditions of order k.

The argument given in [3] can be carried over verbatim to prove
Lemma 5.2. Thus the proof of Theorem 5.1 is complete. |
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