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L INTRODUCTION

In this paper we consider Lp-approximation (1 ~ p ~ (0) by the multi­
integer translates of a finite number of functions which are not necessarily
compactly supported but have a suitable decay rate, In particular, we
introduce a modified notion of controlled approximation and characterize
the controlled approximation order in terms of the Strang-Fix conditions
(see [15]). Our results extend the recent interesting work of Light and
Cheney [12].

Integer translates of a function on ~ were already considered by
Schoenberg in his celebrated paper [13]. Let ¢J be an exponentially
decaying function on ~, For a sequence c on 71., the semi-discrete convolution
product ¢J *' c is the function given by

¢J *' c = L ¢J(- - j) c(j).
i".f

We say that the mapping ¢J *' preserves polynomials of degree k - I, if for
any polynomial p of degree d ~ k - 1, ¢J *' p - p is a polynomial of degree
<do Schoenberg proved that <p *' preserves polynomials of degree k - I if
the Fourier transform ~ satisfies the conditions ~(O) # 0 and D'~(2rrj)= 0
for O~rx<k and jE71.\{O}.
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In the finite element method, multivariate piecewise polynomial functions
are frequently used. In the 1970s, Strang and Fix extended Schoenberg's
work by considering a compactly supported function on IR" and its multi­
integer translates. Let ¢J be a locally integrable function having compact
support. For a sequence c on Z", the semi-discrete convolution product
¢J *' c is the function given by

¢J *' c := L ¢J(. - v) c( v).
\' E.tin

If hand c both are sequences on Z", we also denote by h *' c the sum
L,a" b(· - v) c(v). In [15J Strang and Fix introduced the concept of
controlled approximation and successfully characterized the controlled
L 2 -approximation order by showing that ¢J provides controlled
L 2 -approximation of order k if and only if ¢J satisfies the conditions

(10) ~(O)#Oand

(2') D'~(2nv)= 0 for all lal < k and v E Z"\ {O},

where we have used the multiindex notation. More precisely, we denote by
N the set of nonnegative integers. An element a = (a" ... , a,,) EN" is called
a multiindex. The length of a is defined to be lal := L7=, aj , while the
factorial of a is a!:=a1!·"a,,!. For a multiindexa, Da:=D~I,,·D~",

where Dj is the partial derivative operator with respect to the jth
coordinate, j= 1, ..., n. Now the conditions (1 C) and (2') together are called
the Strang-Fix conditions of order k. We would like to emphasize that in the
univariate case (n = 1) these conditions already appeared in Schoenberg's
work [13].

Strang and Fix [15 J also considered multiinteger translates of a finite
collection of compactly supported functions. To describe their results we
need to introduce some notation. Let IR" be the n-dimensional real linear
space with the norm 11·11 given by

Ilxll:= max \.'1:), x=(x1, ...,X,,)EIR".
1 ~J~'l

If Q <;; IR" and r ~ 0, we denote by B,(Q) the closed ball of radius r around
Q, that is,

B,(Q) := {x E IR": dist(x, Q) ~ r}

with
dist(x, Q) := inf Ilx - .vII.

yEO

When Q = {x}, we write B,(x) for B,(Q), and simply write B, for B,(O). If
f is a measurable function on a measurable subset Q of IR", we denote by
Ilfllp(Q) the quality (Solfl P dX)liP• Similarly,

Iflk.p(Q):= L IID'fllp(Q) and Ilfllk.p(Q):= L IIDafllp(Q)·
lal~k l'l,,:k
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When Q is omitted, the norm is understood to be taken over W. Let
W: = W:(W) be the usual Sobolev space equipped with the norm 11·lk p'

A mapping from 7l" to iC is called a sequence on 7l". The Ip-norm of a
sequence c = (c( v))\. dO, on Q is defined to be

Given h > 0, let a h be the scaling operator given by

ahf(x) := f(hx) for all x E \R".

Let c[J = {</J l' ... , </J N} be a collection of compactly supported functions on
W. We say that c[J provides controlled Lp-approximation of order k if, for
each f E W;'( \Rn

), there exist sequences c7 (j = I, ... , N; h > 0) such that the
following inequalities hold for a constant C independent of h:

(i) Ilf-a (,,/II d...*'ch)h "ipil ~Chklfl .lih .t...;~ I 'f;; I' "'" k.p'
(ii) Ilc71Ip~Cllfllp,j=I, ... ,N.

The collection ep is said to satisfy the Strang-Fix conditions of order k if
there exist finitely supported sequences bj : 7l" -+ iC (j = 1, ..., N) such that
the function L:~ I </Jj.' bj satisfies the Strang-Fix conditions of order k.
Strang and Fix claimed that c[J provides controlled L 2 -approximation of
order k if and only if c[J satisfies the Strang-Fix conditions of order k. Their
claim had been in doubt for a long time and finally was disproved by Jia
[IOJ using a counterexample.

In [9] Dahmen and Micchelli quoted the result of Strang and Fix in a
modified form. They required (i) and (ii) to hold locally. We may say that
c[J provides locally controlled Lp.approximation of order k if for each
fE W~(lRn) there exist sequences c7 (j= 1, ..., N; h>O) such that for any
closed domain G,

(i') Ilf - a lih (Lj''''~ I </Jj .' c;)h -nip Ill' (G) ~ Chk Iflk. p(Brh (G)) and

(ii') Ilc71lp(h -I G - U;~ I supp </Jj) ~ C Ilfllp(Brh(G)), j = 1, ... , N,

hold for some constant C and r independent of h, G, and f It turns out
that c[J does satisfy the Strang-Fix conditions of order k if ep provides
locally controlled Lp-approximation of order k for any pE [1, aJ]. This
was proved by de Boor and Jia [3]. In fact, they proved an even stronger
result by observing that it is the localness rather than the control that does
the job. Thus they introduced the concept of local approximation order by
saying that the collection c[J provides local Lp·approximation of order k, if
for each fE W~(lRn), there exist sequences ('7 (j= 1, ... , N) such that (i) and
the following condition (iii) are satisfied:
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(iii) There exist a constant r independent of h such that
dist( vh, supp f) > r => c7 (v) = 0, J= 1, ..., N.

They proved that </> provides local Lp-approximation of order k if and only
if </> satisfies the Strang-Fix conditions of order k.

Recently Light and Cheney [12] employed a finite collection
r/J = {1ft l' ... , Ift.v} of functions having global support to generate the
approximations. Some assumptions were made about the rate of decay of
these functions at 00. Let .A. E (0, 1) be fixed. For a positive integer k, let
E k = Ek(W) be the space of all functions f on IR" for which

sup {If(x)I(I+llxll)''+k+;}<oo.
XE ~n

Let </> be a finite collection of functions in Ek • Light and Cheney [12]
showed that </> satisfies the Strang-Fix conditions of order k if and only if
for each fE W':jlR") there exist sequences bj (j= 1, ... , N) such that

and

sup {Ibj(v)! (1 + "~,,,"+k+;.)} < 00,
\IE Z"

J=I, ...,N,

In this paper we improve and extend the results of Light and Cheney by
introducing a modified notion of controlled approximation and charac­
terizing the controlled approximation order. From now on we say that </>
provides controlled Lp-approximation of order k if, for each f E W~(W),

there exist sequences cJ (j= 1, ..., N; h>O) such that (i), (ii), and (iii) hold.
Thus our requirement for controlled approximation is stronger than that of
Strang and Fix, but (seemingly) weaker than the requirement of Dahmen
and Micchelli for locally controlled approximation.

In [12] Light and Cheney dealt with La: -approximation only. In
this paper we deal not only with La: -approximation but also with
L p -approximation (l ~ p < 0::;). It should be emphasized that the construc­
tion of Lp-approximation (1 ~ P < 00) requires much more work than
that of L x -approximation. We also observe that the treatment for
Lp-approximation in [3] was inadequate. The present paper gives us an
opportunity to describe the Lp-approximation in details.

The main result of this paper is the following:

THEOREM 1.1. Let </> be a finite collection of elements in Ek . Then </>
provides controlled Lp-approximation (1 ~ p ~ 00) of order k if and on(v if
</> satisfies the Strang-Fix conditions of order k.
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It is not known whether the characterization of de Boor and Jia [3 J for
the local approximation order still holds in the present situation. We
conjecture that this is the case, i.e., C/J provides local L p -approximation of
order k if and only if C/J satisfies the Strang-Fix conditions of order k.

The paper is organized as follows. In Section 2 we discuss the various
equivalent forms of the Strang-Fix conditions. It is interesting to observe
that the equivalence between those various forms can be proved without
any consideration of approximation. In order to construct an Lp-approxi­
mation, an appropriate smoothing technique is needed. Section 3 is
devoted to this smoothing technique and a related problem of local
approximation. On the basis of the results in Section 3, we construct a
global Lp-approximation in Section 4. Finally, in Section 5, we complete
the proof of Theorem 1.1 by invoking a technique used in [3].

2. THE STRANG-FIX CONDITIONS

The Strang-Fix conditions have various equivalent forms. In this section
we show that the equivalence between these various forms can be proved
without any consideration of approximation. The proof of the equivalence
is based on Poisson's summation formula.

In what follows the Fourier transform of a function r/J E L 1(lR fI
) is defined

to be

~(O:=f Q?(x)e- id dx.
I;ln

We denote by fl = fl(lR") the linear space of all polynomials on IR", and
by flk its subspace of all polynomials of (total) degree at most k. Following
Light and Cheney [12J, we denote by V, the monomial given by Xl-+X'/IX!,
x E IR". A mapping Ton fl is called degree-reducing if for any p E fl, Tp is
a polynomial of degree less than the degree of p. If p: x 1-+ I, a, x' is a
polynomial, then p(D) denotes the differential operator induced by p, i.e.,
p(D) = L, a,D'.

The following form of Poisson's summation formula may be found in
Stein and Weiss [14, Chap. 7]. Suppose Q? and its Fourier transform ~ are
continuous on IR", and for some J > 0, there exists a constant C > 0 such
that

Then

1r/J(x)1 ~ C( 1+ Ilxll) -fl- b,

I~ tv)1~ C( 1 + /I y II ) - fI - b,

L Q?(v) = L ~(21tv).
VE Z" \'E.ln

(2.1 )

(2.2)
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On the basis of this result, Dahmen and Micchelli in [8, Lemma 2.1]
gave the following form of Poisson's summation formula: Suppose that
Q? E C,(W) and

Then

~(2n\') = 0 for VE,Z/I\{O}. (2.3 )

~(O) = I Q?(v).
VE ;In

(2.4 )

If Q? is not compactly supported, then it is evident from the proof given in
[8] that (2.4) still holds provided that Q? satisfies the conditions (2.1)
and (2.3).

In both [8] and [12], Q? was assumed to be continuous. This would
exclude the characteristic function of the unit cube, which is a typical spline
function. Hence it is desirable to relax the continuity requirement. For this
purpose Jia [11] introduced the concept of normal functions. A function
Q? on W is called normal if Q? is locally integrable and for any x E IR",

. I fQ?(x) = hm Q?(Y) dy,
c~om(BJx) B,(x)

(2.5)

where m denotes the Lebesgue measure. For a piecewise polynomial
function Q?, the limit on the right of (2.5) always exists, and this limit equals
Q?(x) if x is not on the mesh. The following form of Poisson's summation
formula is what we will need.

THEOREM 2.1. Suppose that Q? is normal and satisfies (2.1). If the Fourier
transform ~ satisfies (2.3), then (2.4) holds.

Proof For c: > 0, let

Q?c(x):= 1 f Q?(v)dy.
. m(B,(x)) B,(x) .

Fix c: for the moment. Then Q?r.E C(lR/I), and Q?, satisfies (2.1). We observe
that

~,(2nv)=_I-f f Q?(x+y)e- ix2n'dxd.F
m(BJ B, R"

A 1 f .= Q?(2nv)-- e'Y 2n'dy.
m(B,) B,

Hence

~£(2nv)=0, VE,Z/I\{O},

~£(O) = ~(O).
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Since r/J, is continuous and satisfies (2.1) and (2.3), we have

~,(o) = I r/J,(v).
\'E £11

By the normality of r/J,

r/J(v) = lim r/J,(v),
i;_O

(2.6 )

Letting /; -+ 0 in (2.6), we obtain the desired result. I
Let now r/J be a normal function in EdlR n

). We consider the action of
the operator <p *' on ilk -I' Note that for any p E ilk _ I> r/J *' p =
L'El"rP('-v)p(v) is well defined. The following theorem and its
corollaries can be proved on the basis of Theorem 2.1 (the Poisson summa­
tion formula).

THEOREM 2.2. Let rP he a normal function in EdlRn
). The mapping rjJ *'

maps Ilk 1 into itself if' and only if the Fourier transform ~ satisfies

p( -iD) ~(2nv) = 0 forall pEIlk I and VEZn\{O}. (2.7)

COROLLARY 2.3. The mapping rP *' is an isomorphism on Ilk .. I if and
only if rP satisfies the Strang-Fix conditions of order k, that is, ~ satisfies
(2.7) and ~(O) #- O. If, in addition to (2.7), ~ satisfies ~(O) = 1, then 1 - rP *'
is a degree-reducing mapping on Jlk - 1 •

COROLLARY 2.4. The mapping rP *' is the identity on Ilk _ I if and only if
in addition to (2.7) ~ satisfies

p( - iD) ~(O) = p(O) for all p E Ilk - I .

Remark. When rP is compactly supported, Theorem 2.2 and its corollaries
were first proved by Strang and Fix in [15]. See [1, 2, 8, 11] for various
extensions of Strang and Fix's results. The proofs given in [1, 2, 8, 11] can
be carried over verbatim in the present situation.

We consider now a finite collection c[J = {rP I' ... , r/J N} of normal functions
in Ek . Recall that c[J is said to satisfy the Strang-Fix conditions of order k
if there exist finitely supported sequences hj (j = 1, ..., N) such that
r/J = I:~ I <Pj *' hj satisfies the Strang-Fix conditions of order k. When
rPI, ... ,r/JN are compactly supported, Strang and Fix [15] gave several
equivalent forms of their conditions. Their results can be extended to the
case in which rPI' ..., r/JN are in Ek.
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THEOREM 2.5. Let i/J= {1,61' ..., ¢t..} be a collection of normal functions in
E k . Then the following conditions are equivalent:

(I) There are functions 1/1, (liXl < k) in span(i/J) such that t,!io(O) = t
and

I Vp( -iD) t,!i, 11(2rrv) = 0
Ii,,; ,

for vEl'''\{O} and liXl <k. (2.8)

(II) There exist 1/1, (Ial <k) in span(i/J) such that

V,- L 1/1, p*' VIIEIl1,1_1'
II,,; ,

(III) There exist finite~)' supported sequences hi such that
¢ = :Lj"= 1 ¢i *' hi satisfies the condition (2.7) and ~(O) # O.

In fact, even in the case where 1,61' ..., 1,6 N are compactly supported, the
proof given by Strang and Fix in [15] was incomplete. The first complete
proof of this result was given by de Boor and Jia in [3]. Their result was
extended by Light and Cheney [12] to the present theorem.

Here we point out that the equivalence of the properties (I), (II), and
(III) can be proved without any consideration of approximation. For this
purpose we only need to supplement a proof for (III) -= (1). Suppose
¢ = :Lj"'= 1 ¢i *' hi satisfies ~(O) = I and condition (2.7). Then we have

Let

N

~(~) = I I bj(}')e il'~ ~j(o,
j = 1 j' E En

N

1/1,:= I I bj (}') V,( -V)!Pi'
j= I ,'E£f1

~E ~".

liXl < k.

(2.9)

We claim that (1/I')I,I<k satisfies t,!io(O) = I and the condition (2.8). Indeed,
it follows from (2.9) that

/Ii

I = ~(O) = I I bj(v) ~J(O).
i = 1 I'E zn

Hence t,!io(O) = I, as desired. Moreover, for liXl <k and vEl'''\{O}, an
application of the Leibnitz differentiation formula gives

0= V,(-iD)~(2rrv)

== p~, t~1 1?-;" V,_p( -Y) bj(il
)} V/!( -iD) ~J(2nv)

== L Vp(-iD)t,!i'_11(2nv).
11,,; ,

This completes the proof of Theorem 2.5.
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If ep = {tP I' ... , tP ."I} satisfies the Strang-Fix conditions of order k, then
there exist finitely supported sequences hi (j = 1, ..., N) such that the
function tP := I:j\~ 1 tPj *' hi induces a degree~reducing mapping 1- ~ *' on
[Jk I' Light and Cheney [12] proved that there exists a sequence h such
that the function t/J := tP *' h induces an identity t/J *' on [Jk I' Using this
t/J, they constructed an L ~ -approximation as follows. For fEW: (W), let

They showed that there exists a constant C such that

(2.10)

for all f E W:.([RIl) and h > O. (2.11 )

The sequence h they used, however, is not finitely supported, hence their
method does not produce a local approximation in the sense of de Boor
and Jia [3]. To overcome this difficulty we prove the following lemma
shuwing that h can be so chosen that it is supported on the set {ex E Nil:
lexl~k-l} (see [1,4]). In the following, for XE[RIl, [x] denotes the
functional of point-evaluation at x, and T< denotes the translation operator
given by T<(f) = f( . + x).

LEMMA 2.6. Let ~ E E k be a normal function such that 1 - tP *' is a
degree-reducing mapping on [Jk I' Then there exists a sequence b supported
on {ex E Nil: lexl ~ k - 1} such that the mapping t/J *' induced by t/J = tP *' b is
the identity on [Jk _ 1 •

Proof. The operator L: = ~ *' IIT, I is an isomorphism on [Jk _ 1 .

Moreover L commutes with every translation operator T<, x E [R". Let L· I

be its inverse operator. Then L 1 also commutes with translation
operators, and [O]L 1 is a linear functional on [Jk_ \. Let A be the span
of linear functionals [ex], ex E Nil, lexl ~ k - 1. Then A and [Jk 1 are dual to
each other with respect to the bilinear function given by

<[a], p> := p(a)

(see, e.g., [5]). Hence there exist complex numbers a~ (a E Nil and
lexl ~ k - 1) such that

[O]L --I = L a~[a].

1'1';; k - 1

For any p E [Jk _ \ and x E [R1l, p(. + x) is also in [Jk . I' Hence the above
equation yields

[O]L I(p(. + x)) = L a,[ex](p(· + x)).
\'1';; k \



APPROXIMATION BY TRANSLATES

Since L - I commutes with T" we have

11

(L -lp)(X)= I a,T,p(x)
1'1" k - I

It follows that

L- 1 = I a,T,.
1'1" k - I

Let h: zn --> C be given by

for all x E IW.

b(fJ) = {a p
,

0,

Then for any p E Ilk _ I

if fJ EF~Jn and IfJl:>; k - I;

otherwise.

(t/J*'h)*'P=( L a~T,t/J)*'P=L-l(t/J*'P)=Ll(LP)=P. I
1'1" k - 1

Now with the help of Lemma 2.6 the result of Light and Cheney in [12]
says that if ([J satisfies the Strang-Fix conditions of order k, then ([J

provides controlled L ex: -approximation of order k. Note that the point­
evaluation functionals [hv] are used in (2.10). In general, point-evaluation
functionals are not continuous on w;(~n) (1 :>; P < w). Hence a suitable
smoothing technique must be worked out in order to construct an
Lp-approximation. This is the content of the next section.

3. LOCAL ApPROXIMATION

Let!/J be an element of C,X(W) such that supp!/JcB,(O), !/J~O, and
SIjJ = 1. Set

!/Jh := !/J(-jh)/h", h > o.

For a given function f E Lp(W) (1:>; p:>; w) and h > 0, consider the
function

(3.1 )

where Vu denotes the difference operator given by

Vuf:= f -f(·- u).
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Correspondingly, we denote by D" the directional derivative operator in
direction u, i.e.,

D,,= L ujD j
j~ I

for u = (u l , ... , U/l) E [R".

In the univariate case (n = 1), such a smoothing technique was employed
by DeVore [7] in studying degree of approximation.

THEOREM 3.1. For fELp(!R") (l~p~cc), the functions fh are
CX-smooth. Moreover, there exists a constant C depending only on k and n
such that for any measurable set Q £ !R"

(a) IIi;, IIp(Q) ~ Cllfllp(Bkh(Q));

(b) Ilfhllx(Q)~Ch /l/pIIIllp(Bkh(Q)) (1 ~p<x:,);

(c) "(Lvun Ifh(hvW)I/1' ~ Ch "ip Ilfll p (1 ~ p < ce).

Proof From the welI-known expression

k (k)V: f = L (- l)m m I(· - mu),
m=O

we deduce that

(3.2)

Observe that for m ~ 1

J f(· - mu) t/Jh(U) du = J f(· - u) t/Jh(u/m)/m" du= f * t/Jh( ·/m)/m".
lti:n J~n

(3.3 )

From (3.1)-(3.3) we see that the functions II. are CX-smooth, because t/Jh
are C X functions for any h > O.

Part (a) of this theorem can be proved by applying the generalized
Minkowski inequality to the integral in (3.3). For 1~ m ~ k, we have

II t I (' - mu) t/Jh(U) dut (Q) ~L, Ilf(· - mu)ll p(Q) t/Jh(U) du

~ Ilfllp(Bkh(Q)) t, t/Jh(U) du = Ilfllp(Bkh(Q)).

It folIows that
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k (k)
C ~ ,,~ I m = 2

k
- 1.
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for O~m~k.

The proof of part (b) relies on Holder's inequality. Let q be the exponential
conjugate to p, i.e., I/q+ I/p= 1. Note that suppljJh<:;;Bh. By Holder's
inequality, we have

ItJ(x-mu) IjJh(U) dul ~ (Lh If(x- muW dU)'P (Lh (ljJh(UW durq

·

(3.4 )

For the first integral on the right of (3.4) we have the following estimate:

(Lh If(x-muW durp

~ Ilfllp(Bkh(x)),

Making change of variables in the second integral gives

(Lh (ljJh(u))qduy/q =(hnLJ (IjJ(UWduy/qlhn~Ch-n/p,

where C=SUPuEl<n{IjJ(U)}. This proves part (b).
In particular, part (b) implies that

I Ifh(hvW ~ CPh Il I f If(xW dx.
~'E z.'" \' E £r1 Bkh( \'h)

We observe that every x E IRn is covered by at most (2k + 1)1l balls Bkh(vh)
(v E Ell). Thus the proof of part (c) will be complete once we prove the
following lemma.

LEMMA 3.2. Let cr be a collection of measurable subsets of IRn and M a
positive integer. Suppose that every point x E IRn is covered by at most M sets
from cr. Then for any gEL I (IR"),

L f Ig(x)ldx~Mf Ig(x)ldx.
EE ~ E I<n

Proof For each E E cr, let XE denote its characteristic function. Since
every point x E IRn is covered by at most M sets from g, we have
LEE~ XE(X) ~ M for all XE IR". Therefore,

L f.lg(x)ldx~Llg(x)1 I XE(x)dx~Mf nlg(x)ldx,
EE~ E R EE~ I<

as desired. I
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Remark. Sometimes it is desirable to relax the smoothness requirement
for the kernel l/J. If l/J E Ck

, then fh are also Ck -smooth, and the properties
(a), (b), and (c) of Theorem 3.1 still hold.

The following theorem tells us that .f~ is a good approximation to f
when h is small.

THEOREM 3.3. There exists a constant C depending only on k and n such
that for any f E W~(IJ~") (1 ~ p ~ 00) and any measurable set Q s; 1R",

o~ I~k. (3.5 )

Proof If I=k, then (3.5) is a consequence of Theorem 3.1. Thus we
only need to deal with the case 0 ~ 1< k. First we assume that f is
Ck-smooth. It suffices to estimate IIDfJ(f - fh)ll p for each f3 EN", 1131 = 1< k.
Since

we have

Given a positive integer r, let M r be the B-spline given by the rule

(3.6 )

forall gEC(IR).

where V is the difference operator defined by Vg := g - g( . - 1). Then M r

is supported on the interval [0, r]. Moreover, by Peano's theorem (see,
e.g., [6, p. 70]),

vrg = f; (Drg)(·-t) Mr(t)dt,

Hence

It follows that

DfJ(f - fh)(X) = f fk' V~D: 'DfJf(· - tu) M k ,(t) l/J h(U) dt duo
j<" 0
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Applying the generalized Minkowski inequality to the above integral, we
obtain

IID(i(f - fh)llp(Q)

~ f r-' IIV~D:-'D(if(·- tu)lI p(Q) Mk-At) ljJ,,(u) dt duo (3.7)
iR' 0

Note that Du=L7~lujDj for u=(u1, ...,un ). Hence for UESUPPt/JhSBh
and O~t~k-I, we have

where C is a constant depending only on k and n. Since both the integrals
g-' Mk_,(t)dt and fi'l,t/Jh(U)du are equal to I, hence (3.7) and (3.8)
together yield the following estimate:

(3.9)

When I ~ p < oc, Ck(W) n W~(IW) is dense in W~(IRn), so the estimate
(3.9) holds for any fE W;(/Rn). In the case p= CfJ, we may assume without
loss that the measure of Q is finite and positive. Then any g E Lx;(Q) is also
in Lp(Q) (I ~ p < CfJ). Moreover, Ilgllp(Q) converges to Ilgllx as p ...... oc.
Thus, letting p -> oc in (3.9), we conclude that (3.9) is also true for p = oc
and fE W~(W). I

4. GLOBAL ApPROXIMATION

Let </J be a normal function in EdlRn
). Then there is A> 0 such that

1</J(x)1 ~C(I + IlxIW n
-

k
-

i for all XE W,

where C is a constant depending only on </J. In this section we construct an
L p -approximation (I ~ p ~ CfJ) using translates of </J. In what follows C
means a constant depending only on k, n, )., and ¢. In particular, C is
independent of p. But C may be different in different contexts. Our
construction is motivated by the work of Dahmen and Micchelli [9].

THEOREM 4.1. Let </JEEk (lR n
) be a normal function. For IE W;(W)

(I ~ p ~ oc) and h > 0, set

640721-2
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where fh are given by (3.1 ). If,p *' is the identity on n k _ l' then

Proof In the case p = 00, the above estimate was already proved by
Light and Cheney [12] for sh:=al/h(,p*'ahf) (see (2.10) and (2.11)).
Their proof is also valid in the present situation. In the following we
assume that I ~ p < 00. By Theorem 3.3, we have

Hence it remains to show that

Let

G~,h := (IX + [0, l]n)h,

We estimate Ifh(X) - sh(x)1 for x E G,.h' Fix IX and x E G~,h for the moment.
Let u be the Taylor polynomial of fh of degree k - I about x. In particular,
fh(X)=U(x). Since ,p*' is the identity on nk-I, we have

u= L u(hv) f/JUh - v).
\IE Z"

It follows that

fh(X) - Sh(X) = u(x) - Sh(X)

= L (u(hv)-fh(hv)),p(x/h-v)
VE ;2"

= L (u(hlX + hv) - fh(hlX + hv») ,p(x/h -·IX - v). (4.1)
VEl"

Since ,p E Ek and x/h -IX E [0, I]n for x E G,.h, we have

1,p(x/h-lX-v)1 ~C(I + Ilvll)-k-n-A forall xEG,.h' (4.2 )

We use Taylor's formula to estimate Ifh(hlX + hv) - u(hlX + hv)l. For
simplicity write y:=hlX+hv and ~ ... I:=(l-t)x+ty. Then by Taylor's
theorem we have

Note that

Ily - xii = Ilhv + hlX- xii ~ h(1 + Ilvll) for XE G~,h'
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Hence

where

Fh := L IDPfhl.
IPI =k

From the above estimates we see that

17

(4.3 )

Thus (4.1), (4.2), and (4.4) together yield the following estimate:

Ifh(X) -sh(x)1 ~ Ch k I (l + Ilvll )-n-;.rFh(~v.l) dt.
\! E z.n 0

Let q be the exponential conjugate to p, i.e., llq + lip = 1. By Holder's
inequality, we have

The first factor on the right of the above inequality is bounded from above
by a constant independent of q. To estimate the second factor, we use
Holder's inequality again to obtain

Consequently, we have

forall xEG•. h •

It follows that

Ilfh-Shll;= I f Ifh(x)-sh(x)lPdx
C1E ZII G,t,h

~ CPhkp L: (l + IIvll )-n-A I f rFt(~,.I) dt dx. (4.5)
VEZII :lI:EZn Grx.,h 0
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To estimate the above sum over rx E 71.", we divide the unit interval [0, 1]
into 1 + Ilvll equal parts by setting

I j := {tEIR:)/(1 + IIvll)~t~(j+ 1)/(1 + IIvll)},

Thus

Since x E G ,.h, for t E I j , we have

)=0, ..., IIvll.

~ v.j = (l - t)x + t(hrx + hv) = (( I - t)x + t(hrx)) + thv E G,.h + hvIj ,

while the length of each I j is 1/(1 + Ilvll). Hence

fF:(~V.l)dt~ 1/(1 + IIvll) IIFhll~(G,.h+hvIj)'
IJ

To estimate IIFh ll oc , we set F:=LI{jl~k IDIIII in correspondence to (4.3).
Applying Theorem 3.1 (b) to each Dill (IPI = k) and Q:= G'.h + hvlj , and
then adding them up, we get

IlFd ~(G,.h + hvIj)~ CPh -II 11F11;(G',h + hvI; + Bkh ).

Putting these estimates together, we obtain

where we have used the fact that the Lebesgue measure of G"h is h". We
observe that

hence every point x E IR" is covered by at most (2k + 5)" sets from the
collection {G'h+hvIj+B(k+2Ih:rxE71."}. Therefore, by Lemma 3.2, we
obtain

L 11F1I;(G,.h + hvIj + Bkh ) ~ (2k + 5)" 11F1I;,
0: E Z"

where
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This together with (4.5) and (4.6) gives the desired estimate:

Ilfh-shllp~Chklflk.p. I

19

Let us summarize what we have proved. Let t1> = {¢JI, ... , ¢J N} be a finite
collection of normal functions in EdW). In Section 2 we showed that if t1>
satisfies the Strang-Fix conditions of order k, then there exist finitely
supported sequences hj (j= 1, ..., N) such that the mapping ¢J *' induced by
¢J := L;"~ I ¢Jj *' hj is the identity on Ih _I' In this section we have shown
that for f E W;OW) (1 ~ p ~ et) and h > 0, the function

Sh := (1l/h(¢J *' (1hfh)

satisfies

In the above expression of Sh, substituting ¢J by Lr~ I ¢Jj *' hi' we obtain

where

j= 1, ..., N.

Since hj (j= 1, ... , N) are finitely supported, the sequences ch satisfy the
condition (iii) in Section 1. Moreover, by Theorem 3.1 (c), cf also satisfy
the condition (ii) there. Thus the sufficiency part of Theorem 1.1 has been
proved. The necessity part of Theorem 1.1 will be proved in the next
section.

5. CHARACTERIZATION OF THE CONTROLLED ApPROXIMATION ORDER

We restate the necessity part of Theorem 1.1 as follows:

THEOREM 5.1. Let t1> = {¢i I' ... , ¢i N} be a collection ofnormal functions in
Ed IR n). Let p he a fixed real number, 1~ p ~ et). If for each f E W;( IRn),
there exist sequences cJ (j = 1, ..., N) such that

(i) Ilf - (11/h(Lr~ I ¢Jj *' c7)h - n/Pll p~ ChkIfIk. p'

(ii) IIcJllp~ Cllfllp, j= 1, ..., N, and

(iii) dist(hv, suppf»r=cJ(v)=O, j= 1, ..., N,
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where C and r are positive constants independent of h, then cP satisfies the
Strang-Fix conditions of order k.

Proof The proof goes along the line of [3]. We approximate a tensor
product of univariate B-splines-namely, the function

n (k+1)u(x):= 11 M k + I x j --2
- ,

I~ 1

(5.1 )

where My is the B-spline given by (3.6) (see [13]). Since UE W;(lR n), we
can find sequences cJ (j = 1, ... , N; h > 0) so that the conditions (i), (ii), and
(iii) are satisfied. Let

and set g := U - Uh . Then the property (i) implies

We claim that

for letl =m~k and O<h~ 1. (5.2)

To this end we apply the differential operator D' to g and obtain

D'g(~) = f (-ix)' g(x)e-i~Xdx.
Rn

It follows that

IID'gllx~[ Ilxllmlg(x)ldx=:J
JRn for letl =m.

Let R := r + k. Since the support of u is included in the ball Bk , by the
property (iii) we have

Write

cJ(v) = 0 for IIvhll > R. (5.3 )

J= f Ilxll m Ig(x)1 dx+ f IIxll m Ig(x)1 dx=:J 1 +J2 •
IIxll < 2R Ilxll ;;. 2R

Applying Holder's inequality to the first integral J[, we obtain
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For the second integral J 2 we observe that
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Ilxll;?:2R and Ilvhl/~R=u(x)=O and Ilx/h-vl/;?:llxll/(2h). (5.4)

It follows from (5.3) and (5.4) that for II x II ;?: 2R,

N

g(x)= L L h-n/pc~(v)rP;Cx/h-v).

j= 1 Ilnvll,,; R

Since all rPjEEdW) U= 1, ..., N), we deduce from (5.4) that

N

Ig(x)I~C L L h-n;Plc;(v)/I/x/h-vll-n-k-A
j~ 1 IInvll,,; R

N

~ Ch-n/p(llxll/h)-n-k-; L L Ic;(v)l.
j= 1 Ilnvll,,; R

Since c; satisfy the condition (iii), by Holder's inequality we have

Putting the above estimates together, we obtain

for Ilxll;?: 2R.

Note that u is a fixed function. Hence it follows from the above estimate
that

J 2 ~ Chk
+;' f I/xll m - k- n-; dx ~ Ch k •

11.<11 ;> 2R

To summarize, we have proved our claim (5.2).
The Fourier transform of u can be easily computed:

Hence

and

u(O) = 1 (5.5)

lim Daa(~/h)/hk-l =0
h~O

for ~EW\{O} and IIXI <k. (5.6 )
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Recall that g=u-uh . Thus (5.2), (5.5), and (5.6) together yield

lim uh(O)= I
h~O

and

lim D'Uh(~/h)/hk-l=O
h~O

for all ~EW\{O} and IIXI <k.

Therefore it remains to prove the following:

LEMMA 5.2. Let k be a positive integer and ifJ a finite collection of
normal functions in Ek(IPn. For each h > 0, let She ifJ) denote the linear space
spanned by ¢J(.jh - v), where ¢J E ifJ, v E Z". Suppose that there is a family
(Uh)h > 0 offunctions satisfving the conditions

(a) Uh E Sh(ifJ) for each h > 0,

(b) limh~ouh(O)=I,and

(c) lim h ~O D'Uh(~/h)lll-l = °for ~ E [W'\ {O} and IIXI < k.

Then ifJ satisfies the Strang-Fix conditions of order k.

The argument given in [3] can be carried over verbatim to prove
Lemma 5.2. Thus the proof of Theorem 5.1 is complete. I
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